2,922 research outputs found

    Seesaw Right Handed Neutrino as the Sterile Neutrino for LSND

    Full text link
    We show that a double seesaw framework for neutrino masses with μτ\mu-\tau exchange symmetry can lead to one of the righthanded seesaw partners of the light neutrinos being massless. This can play the role of a light sterile neutrino, giving a 3+13+1 model that explains the LSND results. We get a very economical scheme, which makes it possible to predict the full 4×44\times 4 neutrino mass matrix if CP is conserved. Once CP violation is included, effect of the LSND mass range sterile neutrino is to eliminate the lower bound on neutrinoless double beta decay rate which exists for the three neutrino case with inverted mass hierarchy. The same strategy can also be used to generate a natural 3+23+2 model for LSND, which is also equally predictive for the CP conserving case in the limit of exact μτ\mu-\tau symmetry.Comment: 13 pages and one figure; model extended to 3+2 cas

    Supersymmetry Breaking by Type II Seesaw Assisted Anomaly Mediation

    Full text link
    Anomaly mediated supersymmetry breaking (AMSB), when implemented in MSSM is known to suffer from the problem of negative slepton mass squared leading to breakdown of electric charge conservation. We show however that when MSSM is extended to explain small neutrino masses by including a pair of superheavy Higgs triplet superfields (the type II seesaw mechanism), the slepton masses can be deflected from the pure AMSB trajectory and become positive. In a simple model we present in this paper, the seesaw scale is about 10131014GeV10^{13}-10^{14}{\rm GeV}. Gauge coupling unification can be maintained by embedding the triplet to SU(5) {\bf 15}-multiplet. In this scenario, bino is the LSP and its mass is nearly degenerate with NLSP slepton when the triplet mass is right around the seesaw scale.Comment: 18 pages, 4 figures, added references, added footnote

    Conjecture on the Avoidance of the Big Crunch

    Full text link
    KKLT give a mechanism to generate de Sitter vacua in string theory. And recently, the scenario, {\em landscape}, is suggested to explain the problem of the cosmological constant. In this scenario, the cosmological constant is a de Sitter vacuum. The vacuum is metastable and would decay into an anti-de Sitter vacuum finally. Then the catastrophe of the big crunch appears. In this paper by conjecturing the physics at the Planck scale, we modify the definition of the Hawking temperature. Hinted by this modification, we modify the Friedmann equation. we find that this avoid the singularity and gives a bouncing cosmological model.Comment: 6 page

    The Nature of Optical Features in the Inner Region of the 3C48 Host Galaxy

    Get PDF
    The well-known quasar 3C48 is the most powerful compact steep-spectrum radio-loud QSO at low redshifts. It also has two unusual optical features within the radius of the radio jet (~1"): (1) an anomalous, high-velocity narrow-line component, having several times as much flux as does the narrow-line component coinciding with the broad-line redshift; and (2) a bright continuum peak (3C48A) ~1" northeast of the quasar. Both of these optical features have been conjectured to be related to the radio jet. Here we explore these suggestions. We have obtained Gemini North GMOS integral-field-unit (IFU) spectroscopy of the central region around 3C48. We use the unique features of the IFU data to remove unresolved emission at the position of the quasar. The resolved emission at the wavelength of the high-velocity component is peaked <~0.25" north of the quasar, at virtually the same position angle as the base of the radio jet. These observations appear to confirm that this high-velocity gas is connected with the radio jet. However, most of the emission comes from a region where the jet is still well collimated, rather than from the regions where the radio maps indicate strong interaction with an external medium. We also present the results of HST STIS spectroscopy of 3C48A. We show that 3C48A is dominated by stars with a luminosity-weighted age of ~1.4 X 10^8 years, substantially older than any reasonable estimate for the age of the radio source. Our IFU data indicate a similar age. Thus, 3C48A almost certainly cannot be attributed to jet-induced star formation. The host galaxy of 3C48 is clearly the result of a merger, and 3C48A seems much more likely to be the distorted nucleus of the merging partner, in which star formation was induced during the previous close passage.Comment: 10 pages, accepted by The Astrophysical Journa

    Innovative in silico approaches to address avian flu using grid technology

    Get PDF
    The recent years have seen the emergence of diseases which have spread very quickly all around the world either through human travels like SARS or animal migration like avian flu. Among the biggest challenges raised by infectious emerging diseases, one is related to the constant mutation of the viruses which turns them into continuously moving targets for drug and vaccine discovery. Another challenge is related to the early detection and surveillance of the diseases as new cases can appear just anywhere due to the globalization of exchanges and the circulation of people and animals around the earth, as recently demonstrated by the avian flu epidemics. For 3 years now, a collaboration of teams in Europe and Asia has been exploring some innovative in silico approaches to better tackle avian flu taking advantage of the very large computing resources available on international grid infrastructures. Grids were used to study the impact of mutations on the effectiveness of existing drugs against H5N1 and to find potentially new leads active on mutated strains. Grids allow also the integration of distributed data in a completely secured way. The paper presents how we are currently exploring how to integrate the existing data sources towards a global surveillance network for molecular epidemiology.Comment: 7 pages, submitted to Infectious Disorders - Drug Target

    An SO(10) GUT Model with S4S4 Flavor Symmetry

    Full text link
    We present a supersymmetric grand unification model based on SO(10) group with S4S4 flavor symmetry. In this model, the fermion masses are from Yukawa couplings involving 10\bf{10} and 126ˉ\bar{\bf{126}} Higgs multiplets and the flavor structures of mass matrices of both quarks and leptons are determined by spontaneously broken S4S4. This model fits all of the masses and mixing angles of the quarks and leptons. For the most general CP-violation scenario, this model gives sinθ13\sin\theta_{13} a wide range of values from zero to the current bound with the most probable values 0.020.090.02-0.09. With certain assumptions where leptonic phases have same CP-violation source as CKM phase, one gets a narrower range 0.030.090.03-0.09 for sinθ13\sin\theta_{13} with the most probable values 0.040.080.04-0.08. This model gives leptonic Dirac CP phase the most probable values 2-4 radians in the general CP-violation case.Comment: 14 pages,2 figures. Version published in Physical Review
    corecore